
To appear in International Conference on Education and Information Systems: Technologies and Applications (EISTA'03)
Orlando, USA, July 31 to August 2, 2003

A toolbox to teaching and learning data structures:
"Live Algorithms"

Pedro Luis Kantek Garcia Navarro.
Centro Universitário Positivo, UNICENP.

Curitiba, Paraná, 80410-180, Brazil.
E-mail: kantek@pr.gov.br

ABSTRACT

This article proposes a toolbox to help teachers
and students in a hard task of teaching and
learning algorithms and data structures. The
name of that toolbox is "Live Algorithms". The text
starts with issues of abstracting manipulations.
Next, Live Algorithms is explained, where I intend
to show how it could help us. The toolbox is
described, its components are commented and the
advantages of its use are listed. Finally, we
compare the results obtained in two regular
classrooms: the first worked with Live Algorithms
and the other, without it, in a traditional
approach.

Key-words: data structures learning, algorithms
learning, toolbox algorithms teaching.

1. INTRODUCTION

Many authors, as Niklaus Wirth (1986) for
instance, has pointed how the duty of teaching
and learning algorithms as well as programming
is very hard. In fact, to develop the capacity of
building software, mainly those big size and
complexity is very arduous challenge to people
and organizations.

In the past, some kind of approaches has been
taken to make easier this learning. One, and very
important, was the utilization of a new algorithmic
language; nevertheless, seems like any
programming language, already known. To justify
the approach, authors may say "When we
separate what and how will be made something,
we introduce an important task in the project of
someone program: the write, test and expurgation
of the algorithm. Not as a piece of programming
code, but as an application of one idea.

When someone combines the project algorithm
task with it's implementation in a real computer
using available program language, probably
introduces unnecessary complexity. As an

example, when someone studies the Quad Tree
algorithm, all the emphasis must be placed in the
structures idea, functionality, and its fundamental
characteristics. The organization used in the
implementation (language, kind of data, primitive
or derived structures, statements, and/or available
facilities of the development and environment)
must come right after its understanding,
projecting, testing, expurgating and approving as
an algorithm. As soon as someone could be sure
about its robustness and proper functionality, the
work in a real computer could be initiated.

An important comment here, is that the only pre-
request to begin the algorithm study, and also the
program construct, is only a project, paper, pencil,
and a lot of human understanding. No computer is
needed

2. PREVIOUS PROPOSES

A very frequent one, in scientific literature, is
when someone tries to study the actions in a
production of animated sequences that go
together with the algorithm. This approach has as
the main advantage of materializing function. One
example of this approach was the sounded and
colored 30 min movie Sorting Out Sorting made in
1981. [Baecker, 1981]. It compares several kind of
methods. Another examples are BALSA method by
Mark Brown (1984) and John Stasko TANGO
(1990). At Internet there are JELIOT software
[Haajanenn et alli, 1997]. The start message of
TANGO is emblematic: Welcome to the algorithm
theater!".

One problem here is the passive role lived by the
student. He is invited to admire, to see the
algorithm spatial development. How much
learning each student can acquire and how much
real utility by increasing knowledge this method
brings to people is an open question. See [Byrne
at Alli 1996]. More recently, wider proposals that
appear will ask to the student to predict the
algorithm behavior.

Another important question is the low generality
from the proposals of the method. The majority
concentrates a unique aspect of the computer's
science. So, the movie above shows and compares
only few sort methods. The Hill work [2002] deals
only with tree algorithms. It seems there is very
difficult to be generalist in animated matter.

3. THIS PROPOSAL

The Live Algorithm begins showing to the student
one precise algorithm. So, he (or she) is invited to
answer some kind of questions about the
algorithm showed. It can be a variable value in
some algorithms’ point. Or can be an algorithm
full answers for some input data. What or how
many statements will be performed.

The exercise doesn’t ask to development of a new
algorithm. This task comes later, when the
outstanding algorithms knowledge stand. Wirth
[1986], by example, defends this strategy.

4. LIVE ALGORITHMS OBJECTIVES

• The student is demanded to make a
task which has a knowledge of
functionality algorithm already
presented as pre-requested

• Help the student to understand the
algorithms’ dynamic aspect and its
structures of outstanding data;

• Have wide spectrum including the
main themes studied in data structure
and algorithms’ project;

• Be independent of having computers
in classroom;

• Have facility and agility for correcting
papers; as a result, the pupil will have
fast feed back;

• Make distinct postulation for each
student in a way that, everyone should
produce his own work, not allowing
treachery.

• Allow matching duties in order to
obtain best grade’s average in which
the theory test has less weight.

• Permit the students to make papers
out of classroom as a contribution end
effort to raise their grades

• Show practicing how algorithms,
which seems simple can be very
complex behavior.

5. LIVE ALGORITHMS DESCRIPTION

Many programming computers (presently 108)
generate papers containing individual
exercises. All exercises have the same aspect,
because they share an expressive part of the
produced code.
If the code is not shared then it has: introductory
text about the studied problem; a case generator

for a set of input data for this problem; a solver of
the above case.

Each exercise paper has a complete example of a
resolved exercise with comments and one new
the student is asked to solve. To teacher, Live
Algorithms produce a list with the correct
answers questions. Each of generators was code
in APL one of the bests programming language for
this kind of application. The APL program
generates a LATEX file, so, before the student’s
use, this file needed to be compiled. Now, the
visual aspect of Live Algorithms is very nice.

The generator case is very hard to produce. How
the generation of data is random this part of
software has the responsibility to find an exercise
that would be interesting to the student. It must
be non trivial, and it must have an acceptable
complexity. People (well, almost all people) must
solve the exercise in 45 minutes. Particularly
cases, which not deal with algorithm main idea,
must be rejected.

How is produced an exercise by computer
program if each student has a different case about
the same algorithm? So, the effort demanded is
the same. One student can't copy the neighbor's
paper, because of the differences.

6. EXAMPLES

Here, it is a title of Live Algorithms.

Turing Machine: the exercise shows theory, and a
small TM. There is also, an input stream of bits.
The student is invited to say in what state the TM
was conducted.

Many have algorithms examples (sorts, searches,
arithmetic manipulation, nested ifs and else’s, mix
of whiles and repeats, etc). In this exercises the
student is invited following the flow and predict
what are the results found when the algorithms
end.

One LA has the Clavius and Lilus algorithm to find
the day of Eastern in all the years past 1587. The
student must have found the Eastern in a random
year offered by the program.

The recursive approach has around 10 different
exercises: The chess horse path across n x n
board, the anagrams producer, and the quad tree
implementation. In all cases, the student must
answer what is the final computation result.

The fundamental structures (stacks, queues, lists,
linked lists, skip lists and similar) have 14
exercises. One important question to student is
finding errors in linked lists dumped.

Application of linked lists is also presented. An
MS-DOS alocator (FAT processor) and a UNIX
alocator ask to the student to construct the
control tables in both environments.

The tree chapter is the wider. There are theory
exercises, with inclusions, deletions, and
replacing in binary trees, B-trees, binary search
trees. There is also, practical approach: Huffman
trees, dBase trees (ndx files), Sybase trees.

Graph theory is also presented. Minimal path,
Dijkstra, Kruskal, Warshall, Ford-Fulkerson,
Edmonds-Karp Algorithms, topological sort, etc.

In sort methods, there are 5 papers of exercises.
Beginning with the simply ones (bubble, insertion,
selection, shake, etc) and beyond: Shell, quick,
heap etc. There are also nets of comparison.

In artificial intelligence world there are some
algorithms: A*, Minimax, Genetic algorithms,
neural nets, expert systems. By the way, these
examples are almost trivial and the objective is
demonstrating the main functionality of each one.

Petri Nets is here. 3 exercises were produced. An
ATM machine, semi-adder and a randomic petri
net. Theory needed is described in the exercise, to
help the student to answer the question.

Images BMP and GIF are also studied. The
internal characteristics are showed. All kind of bit
mapped images, the LZW algorithm, the
convolution filters, the histogram equalization
algorithms are here.

Cryptography is other main chapter: The DES and
the RSA approach are exposed and also, the
ENIGMA machine. Steganography exercise,
signature in files, and an invitation to break one
RSA communication are examples of the existence
exercises.

7. COMPARISON BETWEEN CLASSIC AND
LIVE ALGORITHMS APPROACHES

Before the existence of this toolbox, any matter of
algorithms or data structures was presented
through the sequence tasks:
a) The topic presentation, its importance in the
computer science and informatics profession.
b) Main algorithms presentation, working with the

students in algorithms flows.
c) Aspects of generality, complexity, advantages
and disadvantages of each one
d) Practical cases presentation, where these
algorithms are used
e) Question the students to produce a new
exercise about these matters.

Comments about:
1. The a,b,c and d tasks don't demand the student
an active work. So, the feedback that teacher
receives is small and without meaning.
2. When the "e" task begins, the majority of the
students copy each other.
3. Serious difficulty: or the students quit during
the scholar time, or the teacher needs to open the
criteria necessary to graduate the student.

When the Live Algorithms is used, the task list
above can be rewrite as
a) Topic presentation and comments about its
importance in computer science
b) Main algorithms presentation
c) Practical classes using Live Algorithms: Each
student gets an individual challenge. Some can do
it in fewer minutes. Other needs one or two
working days. It doesn't matter.

Comments about:
1. The students play an active role in learning
with LA. The majority said the learning is
facilitated. More people can produce some kind of
programming code when compared with other
classes that use traditional approach
2. Use LA implements an important rule in
modern pedagogy: Give to each student the time
he needs to solve any problem. In a student set, "
treat each on as an individual and not as a group".

8. SUMMARIZING:

In the 10 last years, I used LA in data structure
and Advanced Topics classes. The students are
improver and happy with this approach. Average
grades are better today as an opposite on 12 years
back. The computer power is been used to enrich
matters and topics in classroom.
This is more special and noble function for the
computer, than just use it as a tool in
presentations using power point.

9. REFERENCES

[1] Baecker R. "Sorting out Sorting", sonorous and
colored 30 min movie, Dynamic Graphics
Project, University of Toronto, 1981.

[2] Brown M. e Sedgewick R. "A system for
algorithm Animation", Proceedings of ACM
SIGGRAPH 1984, Minneapolis, July 1984, pp
177-186.

[3] Byrne M, Catrambone R. e STASKO J. "Do
algorithms animations aid learning?”
Technical Report GIT-GVU-96-18, GVU
Center, Georgia Institute of Technology,
Atlanta, august 1996.

[4] Haajanen, M. Pesonius, E. Sutinen, J. Tarhio, T.
Teräsvirta, P. Vanninen: Animation of user
algorithms on the Web. In: Proc. VL '97, IEEE
Symposium on Visual Languages, IEEE 1997,
360-367.
http://www.cs.helsinki.fi/research/aaps/Jeliot/

[5] Hill T. "Assessing the instructional value of
students predictions in tree animations",
SIGCSE Doctoral Consortium Application,
University of Mississippi, 2002.

[6] Stasko J. "TANGO: A framework and system for
Algorithm Animation", Computer, vol 23,
no.9, September 1990, pp-27-39.

[7] Wirth, Niklaus. Algorithms and Data
Structures. Prentice
 Hall. 1986.
.

http://www.cs.helsinki.fi/research/aaps/Jeliot/vl.ps.gz
http://www.cs.helsinki.fi/research/aaps/Jeliot/vl.ps.gz

